Fundamentals of Microwave Superconductivity

Short Course Tutorial Superconductors and Cryogenics in Microwave Subsystems 2002 Applied Superconductivity Conference Houston, Texas

Steven M. Anlage

Center for Superconductivity Research Physics Department University of Maryland College Park, MD 20742-4111 USA anlage@squid.umd.edu

Objective

To give a basic introduction to superconductivity, superconducting electrodynamics, and microwave measurements as background for the Short Course Tutorial "Superconductors and Cryogenics in Microwave Subsystems"

Outline

- Superconductivity
- Microwave Electrodynamics of Superconductors
- Experimental High Frequency Superconductivity
- Current Research Topics
- Further Reading

Superconductivity

- The Three Hallmarks of Superconductivity
- Superconductors in a Magnetic Field
- Where is Superconductivity Found?
- BCS Theory
- High-T_c Superconductors
- Materials Issues for Microwave Applications

The Three Hallmarks of Superconductivity

Zero Resistance

Ð

Perfect Diamagnetism

Magnetic Fields and Superconductors are not generally compatible

Macroscopic Quantum Effects

Macroscopic Quantum Effects Continued

Josephson Effects (Tunneling of Cooper Pairs)

What are the Limits of Superconductivity?

BCS Theory of Superconductivity

Bardeen-Cooper-Schrieffer (BCS)

Cooper Pair

s-wave ($\ell = 0$) pairing

Spin singlet pair

Second electron is attracted to the concentration of positive charges left behind by the first electron

First electron polarizes the lattice

 $T_c \cong \Omega_{Debye} \ e^{-1/NV}$

 Ω_{Debye} is the characteristic phonon (lattice vibration) frequency N is the electronic density of states at the Fermi Energy V is the attractive electron-electron interaction

A many-electron quantum wavefunction Ψ made up of Cooper pairs is constructed with these properties:

An energy $2\Delta(T)$ is required to break a Cooper pair into two quasiparticles (roughly speaking)

Cooper pair size: $\xi = v_F \cdot \frac{\hbar}{\Lambda}$

Where do we find Superconductors?

Also:

Nb-Ti, Nb₃Sn, A₃C₆₀, NbN, MgB₂, Organic Salts $((TMTSF)_2X, (BEDT-TTF)_2X)$, Oxides (Cu-O, Bi-O, Ru-O,...), Heavy Fermion (UPt₃, CeCu₂Si₂,...), Electric Field-Effect Superconductivity (C₆₀, [CaCu₂O₃]₄, plastic), ...

Most of these materials, and their compounds, display spin-singlet pairing

The High-T_c Cuprate Superconductors

Layered structure – quasi-two-dimensional Anisotropic physical properties Ceramic materials (brittle, poor ductility, etc.) Oxygen content is critical for superconductivity

Spin singlet pairing d-wave ($\ell = 2$) pairing

YBa₂Cu₃O_{7-δ}

Two of the most widely-used HTS materials in microwave applications

Center for Superconductivity Research HTS Materials Issues Affecting Microwave Applications

Most HTS materials made as epitaxial thin films for use in planar microwave devices

High-T_c → small Cooper Pair size (ξ – correlation length)

$$\xi = \mathbf{v}_{\mathrm{F}} \cdot \frac{\Box}{\Delta} \propto \mathbf{v}_{\mathrm{F}} \cdot \frac{1}{\mathbf{T}_{\mathrm{c}}}$$

 $\xi \sim 1-2$ nm for HTS materials used in microwave applications

Superconducting pairing is easily disrupted by defects: grain boundaries cracks

Josephson weak links are created, leading to: nonlinear resistance and reactance intermodulation of two microwave tones harmonic generation power-dependence of insertion loss, resonant frequency, Q

15

Superconductivity Research

Microwave Electrodynamics of Superconductors

- Why are Superconductors so Useful at Microwave Frequencies?
- The Two-Fluid Model
- London Equations
- BCS Electrodynamics
- Nonlinear Surface Impedance

Why are Superconductors so Useful at Microwave Frequencies?

Low Losses:

Filters have low insertion loss \rightarrow Better S/N, can be made small NMR/MRI SC RF pickup coils \rightarrow x10 improvement in speed High Q \rightarrow Steep skirts, good out-of-band rejection

Low Dispersion:

SC transmission lines can carry short pulses with little distortion RSFQ logic pulses – 1 ps long, ~2 mV in amplitude: $\int V(t)dt = \Phi_0 = 2.07 \text{ mV} \cdot \text{ps}$

Electrodynamics of Superconductors In the Meissner State

Surface Impedance

Surface Resistance \mathbf{R}_{s} : Measure of Ohmic power dissipation $P_{Dissipated} = \frac{1}{2} \operatorname{Re} \left\{ \iiint \vec{J} \cdot \vec{E} \, dV \right\} = \frac{1}{2} \mathbf{R}_{s} \iiint \left| \vec{H} \right|^{2} dA \sim \frac{1}{2} I^{2} R_{s}$

Surface Reactance \mathbf{X}_{s} : Measure of stored energy per period $W_{Stored} = \frac{1}{2} \iiint_{Volume} \left(\left. \mu \left| \vec{H} \right|^{2} + \operatorname{Im} \left\{ \vec{J} \cdot \vec{E} \right\} \right) dV = \frac{1}{2\omega} \mathbf{X}_{s} \underset{Surface}{\iint} \left| \vec{H} \right|^{2} dA \sim \frac{1}{2} LI^{2}$

$$X_s = \omega L_s = \omega \mu \lambda$$

19

Center for Superconductivity Research

Two-Fluid Surface Impedance

The London Equations

The London Equations continued

1st London Equation \rightarrow E is required to maintain an ac current in a SC Cooper pair has finite inertia \rightarrow QPs are accelerated and dissipation occurs

BCS Microwave Electrodynamics

Low Microwave Dissipation

Full energy gap $\rightarrow R_s$ can be made arbitrarily small

Nonlinear Surface Impedance of Superconductors

The surface resistance and reactance values depend on the rf current level flowing in the superconductor

Data from M. Hein, Wuppertal

Superconductivity Research

Why are Superconductors so Nonlinear?

Intrinsic Nonlinear Meissner Effect

rf currents cause de-pairing - convert superfluid into normal fluid

 $\left(\frac{\lambda(0,T)}{\lambda(J,T)}\right)^2 = 1 - \left(\frac{J}{J_{\rm vv}(T)}\right)^2$ J_{NL}(T) calculated by theory (Dahm+Scalapino)

Nonlinearities are generally strongest near T_c and weaken at lower temperatures

How to Model Superconducting Nonlinearity?

(1) Taylor series expansion of nonlinear I-V curve (Z. Y. Shen)

$$I(V) = I(0) + \left(\frac{dI}{dV}\right)_{V=0} \delta V + \frac{1}{2!} \left(\frac{d^2 I}{dV^2}\right)_{V=0} \delta V^2 + \frac{1}{3!} \left(\frac{d^3 I}{dV^3}\right)_{V=0} \delta V^3 + O(\delta V^4)$$

$$I/R \text{ linear term}$$

$$3^{\text{rd}} \text{ order term dominates}$$

 $V = V_0 \sin(\omega t)$ input yields ~ $V_0^3 \sin(3\omega t) + ...$ output

Experimental Microwave Superconductivity

- Cavity Perturbation
- Measurements of Nonlinearity
- Topics of Current Interest
- Microwave Microscopy

Cavity Perturbation

Objective: determine R_s , X_s (or σ_1 , σ_2) from f_0 and Q measurements of a resonant cavity containing the sample of interest

Measurement of Nonlinearities

Intermodulation is a practical problem

Topics of Current Interest In Microwave Superconductivity Research

Identifying and eliminating the microscopic sources of extrinsic nonlinearity Increase device yield Allows further miniaturization of devices Will permit more transmit applications

Identify the additional Drude term now seen in $\sigma(\omega,T)$ under-doped cuprates show $\sigma_2 > 0$ above T_c pseudo-gap electrodynamics

Nonlinear and Tunable Dielectrics

MgO substrates have a nonlinear dielectric loss at low temperatures Ferroelectric and incipient ferroelectric materials as tunable microwave dielectrics/capacitors

References and Further Reading

Z. Y. Shen, "High-Temperature Superconducting Microwave Circuits," Artech House, Boston, 1994.

M. J. Lancaster, "Passive Microwave Device Applications," Cambridge University Press, Cambridge, 1997.

M. A. Hein, "HTS Thin Films at Microwave Frequencies," Springer Tracts of Modern Physics <u>155</u>, Springer, Berlin, 1999.

"Microwave Superconductivity,"

NATO- ASI series, ed. by H. Weinstock and M. Nisenoff, Kluwer, 2001.

- T. VanDuzer and C. W. Turner, "Principles of Superconductive Devices and Circuits," Elsevier, 1981.
- T. P. Orlando and K. A. Delin, "Fundamentals of Applied Superconductivity," Addison-Wesley, 1991.
- R. E. Matick, "Transmission Lines for Digital and Communication Networks," IEEE Press, 1995; Chapter 6.

